fbpx


   Chapter 1: Learning about Functions

1.1 

Functions and Relations

1.2 

Domain and Range of a Function

1.3 

Curve Sketching: Translation and Dilation

1.4 

Reflections of Functions

1.5 

Inverse Functions

1.6 

Circles and other Curves

1.7 

Functions Test

2.1 

Laws of Indices

2.2 

Exponential Functions

2.3 

Exponential Growth and Decay

2.4 

Exponentials Test

3.1 

Relations between Radians and Degrees

3.2 

Finding cos x and sin x using Standard Angles

3.3 

Finding Angles from sine and cosine

3.4 

The Trigonometric Functions

3.5 

Translation and Dilation

3.6 

Trig Functions Test

4.1 

Functions and Trig 1

4.2 

Functions and Trig 2

4.3 

Functions and Trig 3



   Chapter 2: Exponential Functions and Logarithmic Functions

1.1 

Functions and Relations

1.2 

Domain and Range of a Function

1.3 

Curve Sketching: Translation and Dilation

1.4 

Reflections of Functions

1.5 

Inverse Functions

1.6 

Circles and other Curves

1.7 

Functions Test

2.1 

Laws of Indices

2.2 

Exponential Functions

2.3 

Exponential Growth and Decay

2.4 

Exponentials Test

3.1 

Relations between Radians and Degrees

3.2 

Finding cos x and sin x using Standard Angles

3.3 

Finding Angles from sine and cosine

3.4 

The Trigonometric Functions

3.5 

Translation and Dilation

3.6 

Trig Functions Test

4.1 

Functions and Trig 1

4.2 

Functions and Trig 2

4.3 

Functions and Trig 3



   Chapter 3: Trigonometric Functions

1.1 

Functions and Relations

1.2 

Domain and Range of a Function

1.3 

Curve Sketching: Translation and Dilation

1.4 

Reflections of Functions

1.5 

Inverse Functions

1.6 

Circles and other Curves

1.7 

Functions Test

2.1 

Laws of Indices

2.2 

Exponential Functions

2.3 

Exponential Growth and Decay

2.4 

Exponentials Test

3.1 

Relations between Radians and Degrees

3.2 

Finding cos x and sin x using Standard Angles

3.3 

Finding Angles from sine and cosine

3.4 

The Trigonometric Functions

3.5 

Translation and Dilation

3.6 

Trig Functions Test

4.1 

Functions and Trig 1

4.2 

Functions and Trig 2

4.3 

Functions and Trig 3



   Chapter 4: Functions Revision Tests

1.1 

Functions and Relations

1.2 

Domain and Range of a Function

1.3 

Curve Sketching: Translation and Dilation

1.4 

Reflections of Functions

1.5 

Inverse Functions

1.6 

Circles and other Curves

1.7 

Functions Test

2.1 

Laws of Indices

2.2 

Exponential Functions

2.3 

Exponential Growth and Decay

2.4 

Exponentials Test

3.1 

Relations between Radians and Degrees

3.2 

Finding cos x and sin x using Standard Angles

3.3 

Finding Angles from sine and cosine

3.4 

The Trigonometric Functions

3.5 

Translation and Dilation

3.6 

Trig Functions Test

4.1 

Functions and Trig 1

4.2 

Functions and Trig 2

4.3 

Functions and Trig 3



   Chapter 1: Differential Calculus

1.1 

Limits

1.2 

Continuity

1.3 

Derivative from First Principles

1.4 

Differentiating x to the power of n

1.5 

Negative values of n

1.6 

Differentiating roots of x

1.7 

Differentiation Test 1

1.8 

The Product Rule

1.9 

The Quotient Rule

1.10

The Chain Rule

1.11

Differentiation of Exponential Functions

1.12

Differentiation of Logarithmic Functions

1.13

Derivative of sin x and cos x

1.14

The Derivative of tan x

1.15

Differentiation Test 2

2.1 

Gradient of a Line

2.2 

Rate of Change of Non-linear Functions

2.3 

Relating Gradient Function to Original Function

2.4 

Decreasing and Increasing Functions

2.5 

Stationary Points

2.6 

Nature of a Curve

2.7 

Maxima and Minima

2.8 

Curve Sketching Test

3.1 

Maxima and Minima in Everyday Life

3.2 

Related Rates of Change (using the Chain Rule)

3.3 

Curve Sketching

3.4 

Tangents and Normals

3.5 

Instantaneous Velocity

3.6 

Applications Test

4.1 

Differentiation 1

4.2 

Differentiation 2

4.3 

Differentiation 3

4.4 

Differentiation 4



   Chapter 2: Rates of Change

1.1 

Limits

1.2 

Continuity

1.3 

Derivative from First Principles

1.4 

Differentiating x to the power of n

1.5 

Negative values of n

1.6 

Differentiating roots of x

1.7 

Differentiation Test 1

1.8 

The Product Rule

1.9 

The Quotient Rule

1.10

The Chain Rule

1.11

Differentiation of Exponential Functions

1.12

Differentiation of Logarithmic Functions

1.13

Derivative of sin x and cos x

1.14

The Derivative of tan x

1.15

Differentiation Test 2

2.1 

Gradient of a Line

2.2 

Rate of Change of Non-linear Functions

2.3 

Relating Gradient Function to Original Function

2.4 

Decreasing and Increasing Functions

2.5 

Stationary Points

2.6 

Nature of a Curve

2.7 

Maxima and Minima

2.8 

Curve Sketching Test

3.1 

Maxima and Minima in Everyday Life

3.2 

Related Rates of Change (using the Chain Rule)

3.3 

Curve Sketching

3.4 

Tangents and Normals

3.5 

Instantaneous Velocity

3.6 

Applications Test

4.1 

Differentiation 1

4.2 

Differentiation 2

4.3 

Differentiation 3

4.4 

Differentiation 4



   Chapter 3: Practical Applications of Differentiation

1.1 

Limits

1.2 

Continuity

1.3 

Derivative from First Principles

1.4 

Differentiating x to the power of n

1.5 

Negative values of n

1.6 

Differentiating roots of x

1.7 

Differentiation Test 1

1.8 

The Product Rule

1.9 

The Quotient Rule

1.10

The Chain Rule

1.11

Differentiation of Exponential Functions

1.12

Differentiation of Logarithmic Functions

1.13

Derivative of sin x and cos x

1.14

The Derivative of tan x

1.15

Differentiation Test 2

2.1 

Gradient of a Line

2.2 

Rate of Change of Non-linear Functions

2.3 

Relating Gradient Function to Original Function

2.4 

Decreasing and Increasing Functions

2.5 

Stationary Points

2.6 

Nature of a Curve

2.7 

Maxima and Minima

2.8 

Curve Sketching Test

3.1 

Maxima and Minima in Everyday Life

3.2 

Related Rates of Change (using the Chain Rule)

3.3 

Curve Sketching

3.4 

Tangents and Normals

3.5 

Instantaneous Velocity

3.6 

Applications Test

4.1 

Differentiation 1

4.2 

Differentiation 2

4.3 

Differentiation 3

4.4 

Differentiation 4



   Chapter 4: Differential Calculus Tests

1.1 

Limits

1.2 

Continuity

1.3 

Derivative from First Principles

1.4 

Differentiating x to the power of n

1.5 

Negative values of n

1.6 

Differentiating roots of x

1.7 

Differentiation Test 1

1.8 

The Product Rule

1.9 

The Quotient Rule

1.10

The Chain Rule

1.11

Differentiation of Exponential Functions

1.12

Differentiation of Logarithmic Functions

1.13

Derivative of sin x and cos x

1.14

The Derivative of tan x

1.15

Differentiation Test 2

2.1 

Gradient of a Line

2.2 

Rate of Change of Non-linear Functions

2.3 

Relating Gradient Function to Original Function

2.4 

Decreasing and Increasing Functions

2.5 

Stationary Points

2.6 

Nature of a Curve

2.7 

Maxima and Minima

2.8 

Curve Sketching Test

3.1 

Maxima and Minima in Everyday Life

3.2 

Related Rates of Change (using the Chain Rule)

3.3 

Curve Sketching

3.4 

Tangents and Normals

3.5 

Instantaneous Velocity

3.6 

Applications Test

4.1 

Differentiation 1

4.2 

Differentiation 2

4.3 

Differentiation 3

4.4 

Differentiation 4



   Chapter 1: Integration (Anti-differentiation)

1.1 

Anti differentiation

1.2 

The Definite Integral

1.3 

Integration of sin x and cos x

1.4 

Integration of Exponential Functions

1.5 

Integration by Recognition

1.6 

Problems using sine and cosine Functions

1.7 

Area under a Curve and between Two Curves

1.8 

Velocity and Acceleration

1.9 

Integration Test



   Chapter 1: Discrete Random Variables

1.1 

Theory Of Probability

1.2 

Venn Diagrams and Tree Diagrams

1.3 

Product Rule

1.4 

Addition Rule

1.5 

Probability Test

1.6 

Probability Distributions: Expectation and Variance

1.7 

Expected Value and Variance of Discrete Random Variable

1.8 

Binomial Probability Distribution

1.9 

Effect of n and p on the Probability Function Graph

1.10

Expected Value and Variance of Binomial Distribution

1.11

Distributions Test

2.1 

Normal Distribution using Mean and Standard Deviation

2.2 

The Standard Normal Curve



   Chapter 2: Continuous Random Variables

1.1 

Theory Of Probability

1.2 

Venn Diagrams and Tree Diagrams

1.3 

Product Rule

1.4 

Addition Rule

1.5 

Probability Test

1.6 

Probability Distributions: Expectation and Variance

1.7 

Expected Value and Variance of Discrete Random Variable

1.8 

Binomial Probability Distribution

1.9 

Effect of n and p on the Probability Function Graph

1.10

Expected Value and Variance of Binomial Distribution

1.11

Distributions Test

2.1 

Normal Distribution using Mean and Standard Deviation

2.2 

The Standard Normal Curve



   Chapter 1: Randomised Revision Tests

1.1 

Revision 1

1.2 

Revision 2

1.3 

Revision 3

1.4 

Revision 4